Published in

Bentham Science Publishers, Current Pharmaceutical Design, 14(25), p. 1616-1622, 2019

DOI: 10.2174/1381612825666190705202030

Links

Tools

Export citation

Search in Google Scholar

Nanoemulsions Loaded with Amphotericin B: Development, Characterization and Leishmanicidal Activity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Leishmaniasis is one of the most neglected diseases in the world. Its most severe clinical form, called visceral, if left untreated, can be fatal. Conventional therapy is based on the use of pentavalent antimonials and includes amphotericin B (AmB) as a second-choice drug. The micellar formulation of AmB, although effective, is associated with acute and chronic toxicity. Commercially-available lipid formulations emerged to overcome such drawbacks, but their high cost limits their widespread use. Drug delivery systems such as nanoemulsions (NE) have proven ability to solubilize hydrophobic compounds, improve absorption and bioavailability, increase efficacy and reduce toxicity of encapsulated drugs. NE become even more attractive because they are inexpensive and easy to prepare. The aim of this work was to incorporate AmB in NE prepared by sonicating a mixture of surfactants, Kolliphor® HS15 (KHS15) and Brij® 52, and an oil, isopropyl myristate. NE exhibited neutral pH, conductivity values consistent with oil in water systems, spherical structures with negative Zeta potential value, monomodal size distribution and average diameter of drug-containing droplets ranging from 33 to 132 nm. AmB did not modify the thermal behavior of the system, likely due to its dispersion in the internal phase. Statistically similar antileishmanial activity of AmB-loaded NE to that of AmB micellar formulation suggests further exploring them in terms of toxicity and effectiveness against amastigotes, with the aim of offering an alternative to treat visceral leishmaniasis.