Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(106), p. 11895-11900, 2009

DOI: 10.1073/pnas.0902828106

Links

Tools

Export citation

Search in Google Scholar

Development of GFP-based biosensors possessing the binding properties of antibodies

Journal article published in 2009 by Tej V. Pavoor, Yong Ku Cho ORCID, Eric V. Shusta
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteins that can bind specifically to targets that also have an intrinsic property allowing for easy detection could facilitate a multitude of applications. While the widely used green fluorescent protein (GFP) allows for easy detection, attempts to insert multiple binding loops into GFP to impart affinity for a specific target have been met with limited success because of the structural sensitivity of the GFP chromophore. In this study, directed evolution using a surrogate loop approach and yeast surface display yielded a family of GFP scaffolds capable of accommodating 2 proximal, randomized binding loops. The library of potential GFP-based binders or ''GFAbs'' was subsequently mined for GFAbs capable of binding to protein targets. Identified GFAbs bound with nanomolar affinity and required binding contributions from both loops indicating the advantage of a dual loop GFAb platform. Finally, GFAbs were solubly produced and used as fluorescence detection reagents to demonstrate their utility.