Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 15(99), p. 10138-10143, 2002

DOI: 10.1073/pnas.152085999

Links

Tools

Export citation

Search in Google Scholar

Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling. RGS8 is a brain-specific RGS protein of 180 aa. Here we identified a short isoform of RGS8, RGS8S, that arises by alternative splicing. RGS8S cDNA encodes a N terminus of 7 aa instead of amino acids 1–9 of RGS8 and 10–180 of RGS8. The subcellular distribution of RGS8 and RGS8S did not differ significantly in transfected cells. RGS8S accelerated, not as efficiently as RGS8, the turning on and off of Gi/o-mediated modulation of G protein-gated inwardly rectifying K + channels in Xenopus oocytes. We next examined the effects of RGS8 and RGS8S on Gq-mediated signaling. RGS8 decreased the amplitude of the response upon activation of m1 muscarinic or substance P receptors, but did not remarkably inhibit signaling from m3 muscarinic receptors. In contrast, RGS8S showed much less inhibition of the response of either of these Gq-coupled receptors. By quantitative analysis of the inhibitory effect and the protein expression level, we confirmed that the difference of inhibitory effect is caused by both the qualitative difference between RGS8 and RGS8S and the quantitative difference of the protein expression level. We also confirmed that the receptor-type specificity of inhibition is not caused by the difference of the expression level of the receptors. In summary, we showed that 9 aa in the N terminus of RGS8 contribute to the function to inhibit Gq-coupled signaling in a receptor type-specific manner and that the regulatory function of RGS8S is especially diminished on Gq-coupled responses.