Published in

American Society for Microbiology, Journal of Clinical Microbiology, 3(49), p. 808-813, 2011

DOI: 10.1128/jcm.01149-10

Links

Tools

Export citation

Search in Google Scholar

Identification of Fusarium Species in Formalin-Fixed and Paraffin-Embedded Sections by In Situ Hybridization Using Peptide Nucleic Acid Probes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Fusarium has recently emerged as an opportunistic pathogen of humans, but the histological differentiation of Fusarium from Aspergillus and Scedosporium is particularly difficult because these fungi may induce similar clinical features and exhibit filamentous development in host tissues. Thus, there is a need to establish rapid and reliable methods that are applicable to pathological diagnoses. The aim of this study was to evaluate and establish in situ hybridization (ISH) using peptide nucleic acid (PNA) probes targeting the 28S rRNA to identify Fusarium species in tissue sections. This technique was validated using both formalin-fixed and paraffin-embedded pulmonary tissues from mice infected with seven different species of fungi and cell blocks from fungal cultures of 30 strains. As a result, strong positive signals were observed within fungal organisms present in tissues of the lung from mice infected with Fusarium solani . Furthermore, this probe reacted strongly with both F. solani and Fusarium oxysporum in sections from cell blocks. Although some cross-reactivity occurred with the Pseudallescheria boydii in sections from cell blocks, the signal intensity was low and most hyphae were not reactive. In conclusion, it was confirmed that ISH with PNA probes is accurate and is a valuable tool for identifying Fusarium spp. among organisms that have identical morphological features in formalin-fixed and paraffin-embedded sections.