Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Marine Drugs, 8(17), p. 439, 2019

DOI: 10.3390/md17080439

Links

Tools

Export citation

Search in Google Scholar

New Discorhabdin Alkaloids from the Antarctic Deep-Sea Sponge Latrunculia biformis

Journal article published in 2019 by Fengjie Li ORCID, Christian Peifer, Dorte Janussen, Deniz Tasdemir ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The sponge genus Latrunculia is a prolific source of discorhabdin type pyrroloiminoquinone alkaloids. In the continuation of our research interest into this genus, we studied the Antarctic deep-sea sponge Latrunculia biformis that showed potent in vitro anticancer activity. A targeted isolation process guided by bioactivity and molecular networking-based metabolomics yielded three known discorhabdins, (−)-discorhabdin L (1), (+)-discorhabdin A (2), (+)-discorhabdin Q (3), and three new discorhabdin analogs (−)-2-bromo-discorhabdin D (4), (−)-1-acetyl-discorhabdin L (5), and (+)-1-octacosatrienoyl-discorhabdin L (6) from the MeOH-soluble portion of the organic extract. The chemical structures of 1–6 were elucidated by extensive NMR, HR-ESIMS, FT-IR, [α]D, and ECD (Electronic Circular Dichroism) spectroscopy analyses. Compounds 1, 5, and 6 showed promising anticancer activity with IC50 values of 0.94, 2.71, and 34.0 µM, respectively. Compounds 1–6 and the enantiomer of 1 ((+)-discorhabdin L, 1e) were docked to the active sites of two anticancer targets, topoisomerase I-II and indoleamine 2,3-dioxygenase (IDO1), to reveal, for the first time, the binding potential of discorhabdins to these proteins. Compounds 5 and 6 are the first discorhabdin analogs with an ester function at C-1 and 6 is the first discorhabdin bearing a long-chain fatty acid at this position. This study confirms Latrunculia sponges to be excellent sources of chemically diverse discorhabdin alkaloids.