Published in

Nonlinear Analysis: Modelling and Control, 4(17), p. 431-447, 2012

DOI: 10.15388/na.17.4.14049

Links

Tools

Export citation

Search in Google Scholar

Theory and computational study of electrophoretic ion separation and focusing in microfluidic channels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

In this work we describe the theory and 2D simulation of ion separation and focusing in a new concept of microfluidic separation device. The principle of the method of ion focusing is classical in the sense that it consists in opposing a hydrodynamic transport ensured by the solution flow to an electrophoretic driving force so that any ionic sample results poised within the microchannel at the point where the two forces equilibrate. The originality of the concept investigated here relies on the fact that thanks to the use of an ion-conducting membrane of variable thickness in electrical contact with the channel the electrophoretic force is varied continuously all along the channel length. Similarly, changing the geometric shape of the membrane allows a facile optimization of the device separation and focusing properties.