Published in

Human Kinetics, Pediatric Exercise Science, 3(31), p. 322-329, 2019

DOI: 10.1123/pes.2018-0178

Links

Tools

Export citation

Search in Google Scholar

Beneficial Impact of Moderate to Vigorous Physical Activity Program on Circulating Number and Functional Capacity of Endothelial Progenitor Cells in Children: The Crucial Role of Nitric Oxide and VEGF-A

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose: Endothelial progenitor cells (EPCs) appear to interact with physical training. This study aimed to provide a comprehensive assessment of the relationship of moderate to vigorous physical activity (MVPA) with both angiogenic factors and EPC function in healthy children. Methods: Forty children (22 boys and 18 girls) aged 7 to 11 years participated in a 10-week MVPA program (duration: 45 min; intensity: 75%–85% of heart rate reserve; frequency: 4 sessions/wk). The anthropometric data, biochemical profile, EPCs number, EPCs colony-forming units, and vascular endothelial growth factor-A (VEGF-A) and nitric oxide (NO) plasma levels were evaluated before and after the MVPA program. Results: After a 10-week MVPA program, a significant increase was detected in circulating/functional capacity of EPCs, NO, and VEGF-A levels, associated with improvement of waist circumference and estimated maximum rate of oxygen consumption (VO2max). A strong positive correlation was found between delta of EPCs number and variation of both NO level (r = .677, P < .001) and VEGF-A level (r = .588, P < .001). Furthermore, a significant correlation between NO level variation and delta of VEGF-A level was observed (r = .708, P < .001). Conclusion: Our findings suggest that lifestyle intervention implemented by MVPA program can contribute meaningfully to improve circulating/functional capacity of EPCs in healthy children, possibly due to the increase of plasma NO and VEGF-A levels.