Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-48509-2

Links

Tools

Export citation

Search in Google Scholar

Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHumic substances have been widely used as plant growth promoters to improve the yield of agricultural crops. However, the mechanisms underlying this effect remain unclear. Root soluble protein profiles in plants 11 days after planting and cultivated with and without humic acids (HA, 50 mg CL−1), were analyzed using the label-free quantitative proteomic approach. Cultivation of maize with HA resulted in higher fresh weight of roots than in untreated plants (control). Plants treated with HA showed increased number, diameter and length of roots. In the proteomics analysis, differences were detected in the following categories: energy metabolism, cytoskeleton, cellular transport, conformation and degradation of proteins, and DNA replication. Thirty-four proteins were significantly more abundant in the seedlings treated with HA, whereas only nine proteins were abundant in the control. The effects on root architecture, such as the induction of lateral roots and biomass increase were accompanied by changes in the energy metabolism-associated proteins. The results show that the main effect of HA is protective, mainly associated with increased expression of the 2-cys peroxidase, putative VHS/GAT, and glutathione proteins. Indeed, these proteins had the highest fold-difference. Overall, these results improve our understanding of the molecular mechanisms of HA-promoted plant growth.