Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Allergy and Clinical Immunology, 3(132), p. 656-664.e17

DOI: 10.1016/j.jaci.2013.06.013

Links

Tools

Export citation

Search in Google Scholar

Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Combined immunodeficiency with multiple intestinal atresias (CID-MIA) is a rare hereditary disease characterized by intestinal obstructions and profound immune defects. OBJECTIVE: We sought to determine the underlying genetic causes of CID-MIA by analyzing the exomic sequences of 5 patients and their healthy direct relatives from 5 unrelated families. METHODS: We performed whole-exome sequencing on 5 patients with CID-MIA and 10 healthy direct family members belonging to 5 unrelated families with CID-MIA. We also performed targeted Sanger sequencing for the candidate gene tetratricopeptide repeat domain 7A (TTC7A) on 3 additional patients with CID-MIA. RESULTS: Through analysis and comparison of the exomic sequence of the subjects from these 5 families, we identified biallelic damaging mutations in the TTC7A gene, for a total of 7 distinct mutations. Targeted TTC7A gene sequencing in 3 additional unrelated patients with CID-MIA revealed biallelic deleterious mutations in 2 of them, as well as an aberrant splice product in the third patient. Staining of normal thymus showed that the TTC7A protein is expressed in thymic epithelial cells, as well as in thymocytes. Moreover, severe lymphoid depletion was observed in the thymus and peripheral lymphoid tissues from 2 patients with CID-MIA. CONCLUSIONS: We identified deleterious mutations of the TTC7A gene in 8 unrelated patients with CID-MIA and demonstrated that the TTC7A protein is expressed in the thymus. Our results strongly suggest that TTC7A gene defects cause CID-MIA. Mosby, Inc. All rights reserved.