Dissemin is shutting down on January 1st, 2025

Published in

Taylor & Francis, Footwear Science, 1(7), p. 1-7

DOI: 10.1080/19424280.2014.939231

Links

Tools

Export citation

Search in Google Scholar

Influence of three different unstable shoe constructions on EMG-activity during treadmill walking:– a cross-sectional study with respect to sensorimotor activation

Journal article published in 2014 by Stephan Schiemann, Heinz Lohrer ORCID, Tanja Nauck
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Manufacturers have introduced specific shoes featuring unstable sole constructions to induce neuromuscular training stimuli. Previous experiments focused primarily on analysing effects of unstable shoe constructions in comparison to ‘regular’ shoes or to barefoot walking. The aim of this study was to compare muscle activity during walking when using three different unstable shoe constructions.Methods: Twelve healthy male subjects participated in this study. Muscle activities of the lower leg were analysed during treadmill walking by surface electromyography (EMG). First, each subject performed an unshod trial (BF = barefoot – control condition). Then, MBT® shoe (MBT), Finnamic-Schuh® (FIN), and Reflex Control® shoe (RC) were randomly applied and tested. EMG-activities of m. tibialis anterior, m. gastrocnemius lateralis, and m. peroneus longus were recorded. In all muscles we calculated integrated EMG (iEMG) for each ground contact phase.Results: When wearing RC the muscle activity of the m. gastrocnemius lateralis and the summarised muscle activity of the lower leg increased significantly when compared to FIN and BF (p = 0.001 to 0.013). There were no significant differences between RC and MBT (p = 0.207 to 0.212). Concerning iEMG of m. peroneus longus and m. tibialis anterior there were no statistically relevant differences detected between testing situations (p = 0.205 to 1.000).Conclusion: The results of the present study indicate that different unstable shoe constructions induce varying demands to the neuromuscular system while walking on a treadmill. We expect the demands of unstable shoe constructions (MBT and especially RC) to be beneficial as sensorimotor training stimuli during walking.