American Chemical Society, Journal of Organic Chemistry, 5(71), p. 1851-1860, 2006
DOI: 10.1021/jo052027c
Full text: Download
The convergent syntheses of three generations of carbosilane dendrimeric carbodiimides are described. The wedge-type building blocks were synthesized in a divergent way, starting from allyl chloride and a repetitive sequence of hydrosilylation with HSiCl3 and a Grignard reaction with allylmagnesium bromide. Hydrogenation of the terminal double bonds led to inert and stable wedges. The chloride substitutent at the focal point was transformed into several functional groups that eventually led to dendrimeric structures with a carbodiimide core. The extent of the site isolation effect of the dendrimers was studied with dilution experiments monitored by FT-IR spectroscopy on the corresponding dendrimeric ureas. These studies showed that only the first generation self-aggregates via hydrogen bonding, while the second and the third do not, implying isolation of core-bound moieties. The dendrimeric carbodiimides mediated lactamization reactions to obtain homodiketopiperazines.