Published in

Oxford University Press, Bioinformatics, 2(36), p. 393-399, 2019

DOI: 10.1093/bioinformatics/btz569

Links

Tools

Export citation

Search in Google Scholar

QPARSE: searching for long-looped or multimeric G-quadruplexes potentially distinctive and druggable

Journal article published in 2019 by Michele Berselli ORCID, Enrico Lavezzo, Stefano Toppo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation G-quadruplexes (G4s) are non-canonical nucleic acid conformations that are widespread in all kingdoms of life and are emerging as important regulators both in RNA and DNA. Recently, two new higher-order architectures have been reported: adjacent interacting G4s and G4s with stable long loops forming stem-loop structures. As there are no specialized tools to identify these conformations, we developed QPARSE. Results QPARSE can exhaustively search for degenerate potential quadruplex-forming sequences (PQSs) containing bulges and/or mismatches at genomic level, as well as either multimeric or long-looped PQS (MPQS and LLPQS, respectively). While its assessment versus known reference datasets is comparable with the state-of-the-art, what is more interesting is its performance in the identification of MPQS and LLPQS that present algorithms are not designed to search for. We report a comprehensive analysis of MPQS in human gene promoters and the analysis of LLPQS on three experimentally validated case studies from HIV-1, BCL2 and hTERT. Availability and implementation QPARSE is freely accessible on the web at http://www.medcomp.medicina.unipd.it/qparse/index or downloadable from github as a python 2.7 program https://github.com/B3rse/qparse Supplementary information Supplementary data are available at Bioinformatics online.