Published in

Trans Tech Publications, Materials Science Forum, (966), p. 215-221, 2019

DOI: 10.4028/www.scientific.net/msf.966.215

Links

Tools

Export citation

Search in Google Scholar

Solvent Effect on Bond Dissociation Enthalpy (BDE) of Tetrahydrocurcumin: A Theoretical Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Solvent effect on bond dissociation enthalpy (BDE) of different functional groups of tetrahydrocurcumin is investigated. This is to evaluate how the polarity of a medium affect BDE and to clarify which functional groups hold the key role in its antioxidant activity through hydrogen transfer. We occupy density functional theory to calculate BDE through geometrical optimization and frequency calculation at six sites of tetrahydrocurcumin in water, methanol and chloroform solvents. The solvents represent polar and non-polar medium. Our result shows that BDE is lower in non-polar medium and hydrogen transfer is favored in this medium. A phenolic group is responsible for the antioxidant activity of tetrahydrocurcumin.