Published in

World Scientific Publishing, Journal of Mechanics in Medicine and Biology, 04(19), p. 1950019, 2019

DOI: 10.1142/s0219519419500192

Links

Tools

Export citation

Search in Google Scholar

Numerical Investigation of the Effects of Bed Shape on the End-To-Side Cabg Hemodynamics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Disrupted flow initiates and aggravates intimal thickening in the end-to-side (ETS) coronary artery bypass grafting (CABG), which may lead to failure. To enhance the post-intervention hemodynamics, the geometry is either optimized or totally reconfigured. Majority of configurations proposed by researchers have not suited CABG surgery, for they entailed rigorous manipulation on conventional grafts in situ, which was neither swift nor straightforward. The aim of the present study is, thus, to introduce a slight, yet effective, modification to a conventional ETS CABG configuration, and numerically investigate its effects on updated hemodynamic and structural environment, anticipating the longevity of proposed configuration and CABG success. This fairly simple modification may easily be made positioning a pre-designed anastomotic device between the bed of host artery in the conventional ETS CABG and its surrounding tissues. Conducting comprehensive numerical simulations, performance of the proposed configuration was assessed using idealized and patient-specific geometries of the conventional ETS CABG. Blood flow was simulated in a conventional and an updated CABG configuration considering 2-way fluid–structure interaction. Results revealed that, although the proposed configuration may induce higher structural stresses in vessels walls, it may improve important hemodynamic metrics such as wall shear stress gradient, oscillatory shear index, and relative residence time on host artery bed reducing disruption of flow. This study may also set the stage for design engineers and regulatory officials to evolve ETS CABG toward more hemodynamics-friendly approaches. Further in vitro, preclinical, and clinical experiments are, yet, entailed to accomplish ideal designs of procedural guidelines/grafts.