Published in

Elsevier, Biophysical Journal, 1(87), p. 408-418, 2004

DOI: 10.1529/biophysj.103.036103

Links

Tools

Export citation

Search in Google Scholar

Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

Journal article published in 2004 by Chad Leidy, Ole G. Mouritsen, Kent Jørgensen, Günther H. Peters ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The sensitivity of phospholipase A(2) (PLA(2)) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA(2) is shown to have higher activity toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-supported double bilayers. As shown by high-performance liquid chromatography results, DSPC is resistant to hydrolysis at this temperature, resulting in a more gradual hydrolysis of the surface that leads to a change in membrane morphology without loss of membrane integrity. This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk high-performance liquid chromatography measurements indicate that PLA(2) preferentially hydrolyzes DMPC in the DMPC/DSPC ripples. We suggest that this leads to the formation of a flat gel-phase lipid membrane due to enrichment in DSPC. The results point to the ability of PLA(2) for inducing a compositional phase transition in multicomponent membranes through preferential hydrolysis while preserving membrane integrity.