Published in

Elsevier, Biophysical Journal, 1(87), p. 386-395, 2004

DOI: 10.1529/biophysj.103.036921

Links

Tools

Export citation

Search in Google Scholar

Interactions of the Human Calcitonin Fragment 9–32 with Phospholipids: A Monolayer Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human calcitonin and its C-terminal fragment 9-32 (hCT(9-32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9-32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9-32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers. A combination of physicochemical methods was applied including surface tension measurements on adsorbed and spread monolayers at the air-water interface, Fourier transform infrared, circular dichroism, and atomic force microscopy on Langmuir-Blodgett monolayers. The results disclose that hCT(9-32) preferentially interacts with negatively charged phospholipids and does not insert spontaneously into lipid monolayers. This supports a nonreceptor-mediated endocytic internalization pathway as previously suggested. Structural studies revealed a random coil conformation of hCT(9-32) in solution, transforming to alpha-helices when the peptide is localized at lipid-free or lipid-containing air-water interfaces. Atomic force microscopy studies of monolayers of the peptide alone or mixed with dioleoylphosphatidylcholine revealed that hCT(9-32) forms filaments rolled into spirals. In contrast, when interacting with dioleoylphosphatidylglycerol, hCT(9-32) does not adopt filamentous structures. A molecular model and packing is proposed for the spiral-forming hCT(9-32).