Published in

The Asian-australasian Association of Animal, Asian-Australasian journal of animal sciences, 9(33), p. 1477-1486, 2020

DOI: 10.5713/ajas.19.0133

Links

Tools

Export citation

Search in Google Scholar

Effects of dietary lycopene on the protection against oxidation of muscle and hepatic tissue in finishing pigs

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Objective: The objective of this study was to evaluate the effect of different levels of lycopene supplementation on the carcass traits, meat quality, concentration of lipid oxidation products and antioxidant potential in the meat and liver of finishing barrows and gilts.Methods: A total of 40 barrows and 40 gilts were allotted in a completely randomized block design, arranged in a 2×5 factorial scheme, consisting of two sexes (barrows and gilts) and five dietary levels of lycopene (0, 12.5, 25.0, 37.5, and 50.0 mg/kg). In addition, four storage times (0, 24, 48, and 72 h), at 4°C, were added to the model to evaluate the longissimus lumborum muscle.Results: An interaction (p = 0.010) was observed between storage periods and dietary lycopene levels. The unfolding of the interaction (lycopene×period) showed a decreasing concentration of malondialdehyde concentration as the dietary lycopene increased, at all storage periods. No interactions (p>0.050) were observed for the 2,2 diphenyl 1 picrylhydrazyl (DPPH) in the pork. However, the percentage of DPPH radical inhibition reduced (p = 0.001) up to 72 h. Additionally, there was a linear increase (p = 0.001) in the capture of DPPH radicals by antioxidants, as the dietary lycopene increased. No interactions were observed (p>0.05) between the evaluated factors in liver. However, lipid oxidation was reduced by supplementing lycopene in pig diets. The capture of the DPPH radical, resulted increase in the antioxidant power exerted by lycopene in the liver (p = 0.001). The concentrations of the thiobarbituric acid reactive substances and DPPH in the liver were affected by sex (p = 0.001).Conclusion: Dietary supplementation of lycopene reduced the water loss during thawing and was effective in protecting against oxidation of the longissimus lumborum muscle and liver until 72 hours of storage, and the best results were obtained by supplementing with 50.0 mg of lycopene/kg of diet.