BMJ Publishing Group, BMJ Open, 8(9), p. e027940, 2019
DOI: 10.1136/bmjopen-2018-027940
Full text: Download
ObjectivesThe objective of this study was to investigate the association between genetic polymorphisms of N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), glutathione S-transferase (GST) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) and the risk of anti-tuberculosis drug-induced liver injury (ATDILI).DesignSystematic review and meta-analysis.Data sourcesPubMed, Embase, Web of Science and Cochrane Reviews databases were searched through April 2019.Eligibility criteriaWe included case-control or cohort studies investigating an association between NAT2, CYP2E1, GST or SLCO1B1 polymorphisms and the ATDILI risk in patients with tuberculosis.Data extraction and synthesisThree authors screened articles, extracted data and assessed study quality. The strength of association was evaluated for each gene using the pooled OR with a 95% CI based on the fixed-effects or random-effects model. Sensitivity analysis was performed to confirm the reliability and robustness of the results.ResultsFifty-four studies were included in this analysis (n=26 for CYP2E1, n=35 for NAT2, n=19 for GST, n=4 for SLCO1B1). The risk of ATDILI was significantly increased with the following genotypes: CYP2E1 RsaI/PstI c1/c1 (OR=1.39, 95% CI 1.06 to 1.83), NAT2 slow acetylator (OR=3.30, 95% CI 2.65 to 4.11) and GSTM1 null (OR=1.30, 95% CI 1.12 to 1.52). No significant association with ATDILI was found for the genetic polymorphisms of CYP2E1 DraI, GSTT1, GSTM1/GSTT1, SLCO1B1 388A>G and SLCO1B1 521T>C (p>0.05).ConclusionsATDILI is more likely to occur in patients with NAT2 slow acetylator genotype, CYP2E1 RsaI/PstI c1/c1 genotype and GSTM1 null genotype. Close monitoring may be warranted for patients with these genotypes.