Published in

MDPI, Pharmaceutics, 8(11), p. 378, 2019

DOI: 10.3390/pharmaceutics11080378

Links

Tools

Export citation

Search in Google Scholar

Retinol-Containing Graft Copolymers for Delivery of Skin-Curing Agents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The new polymeric systems for delivery in cosmetology applications were prepared using self-assembling amphiphilic graft copolymers. The synthesis based on “click” chemistry reaction included grafting of azide-functionalized polyethylene glycol (PEG-N3) onto multifunctional polymethacrylates containing alkyne units. The latter ones were obtained via atom transfer radical polymerization (ATRP) of alkyne-functionalized monomers, e.g., ester of hexynoic acid and 2-hydroxyethyl methacrylate (AlHEMA) with methyl methacrylate (MMA), using bromoester-modified retinol (RETBr) as the initiator. Varying the content of alkyne moieties adjusted by initial monomer ratios of AlHEMA/MMA was advantageous for the achievement of a well-defined grafting degree. The designed amphiphilic graft copolymers P((HEMA-graft-PEG)-co-MMA), showing tendency to micellization in aqueous solution at room temperature, were encapsulated with arbutin (ARB) or vitamin C (VitC) with high efficiencies (>50%). In vitro experiments carried out in the phosphate-buffered saline solution (PBS) at pH 7.4 indicated the maximum release of ARB after at least 20 min and VitC within 10 min. The fast release of the selected antioxidants and skin-lightening agents by these micellar systems is satisfactory for applications in cosmetology, where they can be used as the components of masks, creams, and wraps.