Published in

Hindawi, Journal of Analytical Methods in Chemistry, (2019), p. 1-8, 2019

DOI: 10.1155/2019/1863910

Links

Tools

Export citation

Search in Google Scholar

Simultaneous Determination of Over-the-Counter Pain Relievers in Commercial Pharmaceutical Products Utilizing Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Multivariate Calibration Model

Journal article published in 2019 by Heba Shaaban ORCID, Ahmed Mostafa, Zahra Almatar, Reem Alsheef, Safia Alrubh
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The quality of over-the-counter (OTC) pain relievers is important to ensure the safety of the marketed products in order to maintain the overall health care of patients. In this study, the multivariate curve resolution-alternating least squares (MCR-ALS) chemometric method was developed and validated for the resolution and quantification of the most commonly consumed OTC pain relievers (acetaminophen, acetylsalicylic acid, ibuprofen, naproxen, and caffeine) in commercial drug formulations. The analytical performance of the developed chemometric methods such as root mean square error of prediction, bias, standard error of prediction, relative error of prediction, and coefficients of determination was calculated for the developed model. The obtained results are linear with concentration in the range of 0.5–7 μg/mL for acetaminophen and 0.5–3.5 and 0.5–3 μg/mL for naproxen and caffeine, respectively, while the linearity ranges for acetyl salicylic acid and ibuprofen were 1–15 μg/mL. High values of coefficients of determination ≥0.9995 reflected high predictive ability of the developed model. Good recoveries ranging from 98.0% to 99.7% were obtained for all analytes with relative standard deviations (RSDs) not higher than 1.62%. The optimized method was successfully applied for the analysis of the studied drugs either in their single or coformulated pharmaceutical products without any separation step. The optimized method was also compared with a reported HPLC method using paired t-test and F-ratio at 95% confidence level, and the results showed no significant difference regarding accuracy and precision. The developed method is eco-friendly, simple, fast, and amenable for routine analysis. It could be used as a cost-effective alternative to chromatographic techniques for the analysis of the studied drugs in commercial formulations.