Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 4(72), 2005

DOI: 10.1103/physreve.72.046114

Links

Tools

Export citation

Search in Google Scholar

Work probability distribution in systems driven out of equilibrium

Journal article published in 2005 by A. Imparato, L. Peliti ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We derive the differential equation describing the time evolution of the work probability distribution function of a stochastic system which is driven out of equilibrium by the manipulation of a parameter. We consider both systems described by their microscopic state or by a collective variable which identifies a quasiequilibrium state. We show that the work probability distribution can be represented by a path integral, which is dominated by ``classical'' paths in the large system size limit. We compare these results with simulated manipulation of mean-field systems. We discuss the range of applicability of the Jarzynski equality for evaluating the system free energy using these out-of-equilibrium manipulations. Large fluctuations in the work and the shape of the work distribution tails are also discussed.