Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-11430-3

Links

Tools

Export citation

Search in Google Scholar

Ultrasonic super-oscillation wave-packets with an acoustic meta-lens

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Schrödinger equation is a fundamental equation to describe the wave function of a quantum-mechanical system. The similar forms between the Schrödinger equation and the paraxial wave equation allow a paradigm shift from the quantum mechanics to classical fields, opening up a plethora of interesting phenomena including the optical super-oscillatory behavior. Here, we propose an ultrasonic meta-lens for generating super-oscillation acoustic wave-packets with different spatial momenta and then superimposing them to a diffraction-limit-broken spot, visually represented by the ring-shaped trapping of tiny particles. Moreover, based on the focused super-oscillation packets, we experimentally verify proof-of-concept super-resolution ultrasound imaging, opening up the arena of super-oscillation ultrasonics for advanced acoustic imaging, biomedical applications, and versatile far-field ultrasound control.