Published in

Elsevier, The American Journal of Pathology, 2(167), p. 585-597, 2005

DOI: 10.1016/s0002-9440(10)63000-3

Links

Tools

Export citation

Search in Google Scholar

Overexpression of Human Cripto-1 in Transgenic Mice Delays Mammary Gland Development and Differentiation and Induces Mammary Tumorigenesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Overexpression of Cripto-1 has been reported in several types of human cancers including breast cancer. To investigate the role of human Cripto-1 (CR-1) in mammary gland development and tumorigenesis, we developed transgenic mice that express the human CR-1 transgene under the regulation of the whey acidic protein (WAP) promoter in the FVB/N mouse background. The CR-1 transgene was detected in the mammary gland of 15-week-old virgin WAP-CR-1 female mice that eventually developed hyperplastic lesions. From mid-pregnancy to early lactation, mammary lobulo-alveolar structures in WAP-CR-1 mice were less differentiated and delayed in their development due to decreased cell proliferation as compared to FVB/N mice. Early involution, due to increased apoptosis, was observed in the mammary glands of WAP-CR-1 mice. Higher levels of phosphorylated AKT and MAPK were detected in mammary glands of multiparous WAP-CR-1 mice as compared to multiparous FVB/N mice suggesting increased cell proliferation and survival of the transgenic mammary gland. In addition, more than half (15 of 29) of the WAP-CR-1 multiparous female mice developed multifocal mammary tumors of mixed histological subtypes. These results demonstrate that overexpression of CR-1 during pregnancy and lactation can lead to alterations in mammary gland development and to production of mammary tumors in multiparous mice.