Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-47187-4

Links

Tools

Export citation

Search in Google Scholar

Dose-dependent metabolite changes after ethanol intoxication in rat prefrontal cortex using in vivo magnetic resonance spectroscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractEthanol disrupts the balance between the excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission systems. We aimed to assess how acute ethanol intoxication in rats affects the levels of GABA, glutamate and other cerebral metabolites after injection of two different doses of ethanol. One in vivo magnetic resonance spectrum of the prefrontal cortex region was acquired before and six spectra were acquired after intraperitoneal injections of saline or ethanol (1 g/kg or 2 g/kg). Brain kinetics after exposure to ethanol were compared to blood ethanol kinetics. GABA levels significantly decreased after injection of 1 g/kg but not 2 g/kg doses of ethanol. Choline levels, which serve as a marker of alterations in membrane composition, significantly decreased after injection of 2 g/kg but not 1 g/kg doses of ethanol. Acute ethanol intoxication appears to result in specific dose-dependent changes in the GABA level and choline level.