Published in

MDPI, Nutrients, 7(11), p. 1439, 2019

DOI: 10.3390/nu11071439

Links

Tools

Export citation

Search in Google Scholar

Diurnal Variation of Markers for Cholesterol Synthesis, Cholesterol Absorption, and Bile Acid Synthesis: A Systematic Review and the Bispebjerg Study of Diurnal Variations

Journal article published in 2019 by Schroor, Sennels, Fahrenkrug, Jørgensen ORCID, Plat, Mensink
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Human studies have shown diurnal rhythms of cholesterol and bile acid synthesis, but a better understanding of the role of the circadian system in cholesterol homeostasis is needed for the development of targeted interventions to improve metabolic health. Therefore, we performed a systematic literature search on the diurnal rhythms of cholesterol synthesis and absorption markers and of bile acid synthesis markers. We also examined the diurnal rhythms of the cholesterol synthesis markers lathosterol and desmosterol, and of the cholesterol absorption markers cholestanol, campesterol, and sitosterol in serum samples from the Bispebjerg study. These samples were collected every three hours over a 24-hour period in healthy males (n = 24) who consumed low-fat meals. The systematic search identified sixteen papers that had examined the diurnal rhythms of the cholesterol synthesis markers lathosterol (n = 3), mevalonate (n = 9), squalene (n = 2), or the bile acid synthesis marker 7α-hydroxy-4-cholesten-3-one (C4) (n = 4). Results showed that lathosterol, mevalonate, and squalene had a diurnal rhythm with nocturnal peaks, while C4 had a diurnal rhythm with daytime peaks. Furthermore, cosinor analyses of the serum samples showed a significant diurnal rhythm for lathosterol (cosinor p < 0.001), but not for desmosterol, campesterol, sitosterol, and cholestanol (cosinor p > 0.05). In conclusion, cholesterol synthesis and bile acid synthesis have a diurnal rhythm, though no evidence for a diurnal rhythm of cholesterol absorption was found under highly standardised conditions. More work is needed to further explore the influence of external factors on the diurnal rhythms regulating cholesterol homeostasis.