Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Seed Science Research, 2(29), p. 104-114, 2019

DOI: 10.1017/s0960258519000084

Links

Tools

Export citation

Search in Google Scholar

Temporal dynamics of seedling emergence among four fire ephemerals: the interplay of after-ripening and embryo growth with smoke

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe flora of Mediterranean ecosystems contains families with species having fully and under-developed embryos in their seeds. After-ripening for physiological dormancy release and smoke influence germination in many species. We investigated how after-ripening and embryo growth interact with smoke to influence the temporal dynamics of seedling emergence among fire ephemerals. Seeds were placed in the field and under standardized (50% relative humidity, 30°C) laboratory conditions to test the effects of summer conditions on physiological dormancy loss. Germination was tested with water or smoke compounds (smoke water, KAR1) at a simulated autumn/winter temperature (18/7°C). The timing and amount of seedling emergence with smoke was observed for seeds exposed to near-natural conditions. During summer, physiological dormancy was broken in all species, enabling germination at autumn/winter but not summer temperatures; no embryo growth occurred in seeds with under-developed embryos. At the start of the wet season, seedling emergence from seeds with fully developed embryos occurred earlier than from seeds with under-developed embryos. In a non-consistent manner among our study species, smoke and smoke compounds influenced the rate of embryo growth and amount of germination. Effects of smoke were noticeable in terms of number of emergents in the first emergence season. Among ecologically similar species, we have shown (1) that both thermal and embryo traits exclude germination in the summer, (2) how embryo size influences the timing of seedling emergence in autumn–winter, and (3) a reduced requirement for smoke in the second emergence season after a fire with a shift to reliance on seasonal cues for emergence.