Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(488), p. 1377-1386, 2019

DOI: 10.1093/mnras/stz1795

Links

Tools

Export citation

Search in Google Scholar

Machine-learning identification of asteroid groups

Journal article published in 2019 by V. Carruba ORCID, S. Aljbaae ORCID, A. Lucchini
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTAsteroid families are groups of asteroids that share a common origin. They can be the outcome of a collision or be the result of the rotational failure of a parent body or its satellites. Collisional asteroid families have been identified for several decades using hierarchical clustering methods (HCMs) in proper elements domains. In this method, the distance of an asteroid from a reference body is computed, and, if it is less than a critical value, the asteroid is added to the family list. The process is then repeated with the new object as a reference, until no new family members are found. Recently, new machine-learning clustering algorithms have been introduced for the purpose of cluster classification. Here, we apply supervised-learning hierarchical clustering algorithms for the purpose of asteroid families identification. The accuracy, precision, and recall values of results obtained with the new method, when compared with classical HCM, show that this approach is able to found family members with an accuracy above 89.5 per cent, and that all asteroid previously identified as family members by traditional methods are consistently retrieved. Values of the areas under the curve coefficients below Receiver Operating Characteristic curves are also optimal, with values consistently above 85 per cent. Overall, we identify 6 new families and 13 new clumps in regions where the method can be applied that appear to be consistent and homogeneous in terms of physical and taxonomic properties. Machine-learning clustering algorithms can, therefore, be very efficient and fast tools for the problem of asteroid family identification.