Published in

Cell Press, Molecular Therapy, 5(15), p. 981-988

DOI: 10.1038/mt.sj.6300134

Links

Tools

Export citation

Search in Google Scholar

Engineering Artificial Antigen-presenting Cells to Express a Diverse Array of Co-stimulatory Molecules

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To facilitate the therapeutic application of antigen-presenting cells (APCs), we have developed a cell-based artificial APC (aAPC) system by engineering K562 cells with lentiviruses to direct the stable expression and secretion of a variety of co-stimulatory molecules and cytokines. Here we report the use of a combinatorial lentiviral gene transfer approach to achieve long-term stable expression of at least seven genes in the K562 parental cell line. Expression of various combinations of genes on the aAPC enables the precise determination of human T-cell activation requirements, such that aAPCs can be tailored for the optimal propagation of T-cell subsets with specific growth requirements and distinct functions. The aAPCs support ex vivo growth and long-term expansion of functional human CD8 T cells without requiring the addition of exogenous cytokines, in contrast to the use of natural APCs. Distinct populations of T cells can be expanded with aAPCs expressing CD137L (4-1BBL) and/ or CD80. Finally, the aAPCs provide an efficient platform to expand genetically modified T cells and to maintain CD28 expression on CD8 T cells. Therefore, K562-based aAPCs have therapeutic potential for adoptive immunotherapies and vaccinations.