Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 17(106), p. 7215-7220, 2009

DOI: 10.1073/pnas.0810624106

Links

Tools

Export citation

Search in Google Scholar

Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Several experimental manipulations of the CNS environment successfully elicit regeneration of sensory and bulbospinal motor axons but fail to elicit regeneration of corticospinal axons, suggesting that cell-intrinsic mechanisms limit the regeneration of this critical class of motor neurons. We hypothesized that enhancement of intrinsic neuronal growth mechanisms would enable adult corticospinal motor axon regeneration. Lentiviral vectors were used to overexpress the BDNF receptor trkB in layer V corticospinal motor neurons. After subcortical axotomy, trkB transduction induced corticospinal axon regeneration into subcortical lesion sites expressing BDNF. In the absence of trkB overexpression, no regeneration occurred. Selective deletion of canonical, trkB-mediated neurite outgrowth signaling by mutation of the Shc/FRS-2 activation domain prohibited Erk activation and eliminated regeneration. These findings support the hypothesis that the refractory regenerative state of adult corticospinal axons can be attributed at least in part to neuron-intrinsic mechanisms, and that activation of ERK signaling can elicit corticospinal tract regeneration.