Dissemin is shutting down on January 1st, 2025

Published in

Medknow Publications, Asian Journal of Andrology, 5(13), p. 742-746, 2011

DOI: 10.1038/aja.2010.184

Links

Tools

Export citation

Search in Google Scholar

Effects of Ginkgo biloba extracts with mirodenafil on the relaxation of corpus cavernosal smooth muscle and the potassium channel activity of corporal smooth muscle cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1×10⁻⁵ mol l⁻¹ norepinephrine, GBE (0.01-1 mg ml⁻¹) and mirodenafil (0.01-100 nmol l⁻¹) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavernosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml⁻¹ to 52.28% ± 11.42% at 1 mg ml⁻¹). After pre-treatment with 0.03 mg ml⁻¹ of GBE, the relaxant effects of mirodenafil were increased at all concentrations. After tetraethylammonium (TEA) (1 mmol l⁻¹) administration, the increased effects were inhibited (P<0.01). Extracellular administration of GBE increased the whole-cell K(+) outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by 1 mmol l⁻¹ TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K(+) flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.