Wiley, Journal of Bone and Mineral Research, 11(25), p. 2504-2514, 2010
DOI: 10.1002/jbmr.144
Full text: Download
Wdr5, a bone morphogenetic protein 2 (BMP-2)-induced protein belonging to the family of the WD repeat proteins, is expressed in proliferating and hypertrophic chondrocytes of the growth plate and in osteoblasts. Although previous studies have provided insight into the mechanisms by which Wdr5 affects chondrocyte and osteoblast differentiation, whether Wdr5 is required in vivo for endochondral bone development has not been addressed. In this study, using an avian replication competent retrovirus (RCAS) system delivering Wdr5 short hairpin (sh) RNA to silence Wdr5 in the developing limb, we report that reduction of Wdr5 levels delays endochondral bone development and consequently results in shortening of the skeletal elements. Shortening of the skeletal elements was due to impaired chondrocyte maturation, evidenced by a significant reduction of Runx2, type X collagen, and osteopontin expression. A decrease in Runx2, type collagen I, and ostepontin expression in osteoblasts and a subsequent defect in mineralized bone was observed as well when Wdr5 levels were reduced. Most important, retroviral misexpression of Runx2 rescued the phenotype induced by Wdr5 shRNA. These findings suggest that during limb development, Wdr5 is required for endochondral bone formation and that Wdr5 influences this process, at least in part, by regulating Runx2 expression.