Published in

Pensoft Publishers, Proceedings of TDWG, (3), 2019

DOI: 10.3897/biss.3.37559

Links

Tools

Export citation

Search in Google Scholar

Evaluating Geographic Patterns of Morphological Diversity in Ferns and Lycophytes Using Deep Neural Networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

With digitized herbarium specimens and associated metadata accumulating rapidly in open access repositories, we are now able to exploit data-hungry computer vision techniques in order to evaluate fundamental questions in plant evolution. High among the list of unknowns is the role that ecological factors, such as morphological similarity, play in mediating biogeographic patterns of taxonomic and phylogenetic diversity. Here, we integrate deep convolutional neural networks (CNNs) into a biogeographic study of morphological, taxonomic, and phylogenetic diversity in ferns and lycophytes. We show how CNNs and digitized specimens can be used to extract quantitative estimates of morphospace occupation, and we use these techniques to evaluate diversity-disparity relationships within ferns across latitudes. We also discuss how CNNs can be used to overcome logistical obstacles arising from modern workflows involving millions of images.