Published in

Mineralogical Society of America, American Mineralogist, 7(104), p. 1005-1015, 2019

DOI: 10.2138/am-2019-6967

Links

Tools

Export citation

Search in Google Scholar

Compressibility of synthetic Mg-Al tourmalines to 60 GPa

Journal article published in 2019 by Eleanor J. Berryman ORCID, Dongzhou Zhang, Bernd Wunder, Thomas S. Duffy ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-pressure single-crystal X-ray diffraction patterns on five synthetic Mg-Al tourmalines with near end-member compositions [dravite NaMg3Al6Si6O18(BO3)3(OH)3OH, K-dravite KMg3Al6Si6O18(BO3)3(OH)3OH, magnesio-foitite □(Mg2Al)Al6Si6O18(BO3)3(OH)3OH, oxy-uvite CaMg3Al6Si6O18(BO3)3(OH)3O, and olenite NaAl3Al6Si6O18(BO3)3O3OH, where □ represents an X-site vacancy] were collected to 60 GPa at 300 K using a diamond-anvil cell and synchrotron radiation. No phase transitions were observed for any of the investigated compositions. The refined unit-cell parameters were used to constrain third-order Birch-Murnaghan pressure-volume equation of states with the following isothermal bulk moduli (K0 in GPa) and corresponding pressure derivatives (K0′ = ∂K0/∂P)T: dravite K0 = 97(6), K0′ = 5.0(5); K-dravite K0 = 109(4), K0′ = 4.3(2); oxy-uvite K0 = 110(2), K0′ = 4.1(1); magnesio-foitite K0 = 116(2), K0′ = 3.5(1); olenite K0 = 116(6), K0′ = 4.7(4). Each tour-maline exhibits highly anisotropic behavior under compression, with the c axis 2.8–3.6 times more compressible than the a axis at ambient conditions. This anisotropy decreases strongly with increasing pressure and the c axis is onlŷ14% more compressible than the a axis near 60 GPa. The octahedral Y- and Z-sites' composition exerts a primary control on tourmaline's compressibility, whereby Al content is correlated with a decrease in the c-axis compressibility and a corresponding increase in K0 and K0′. Contrary to expectations, the identity of the X-site-occupying ion (Na, K, or Ca) does not have a demonstrable effect on tourmaline's compression curve. The presence of a fully vacant X site in magnesio-foitite results in a decrease of K0′ relative to the alkali and Ca tourmalines. The decrease in K0′ for magnesio-foitite is accounted for by an increase in compressibility along the a axis at high pressure, reflecting increased compression of tourmaline's ring structure in the presence of a vacant X site. This study highlights the utility of synthetic crystals in untangling the effect of composition on tourmaline's compression behavior.