Published in

American Association for Cancer Research, Cancer Research, 13(79), p. 3372-3382, 2019

DOI: 10.1158/0008-5472.can-18-0189

Links

Tools

Export citation

Search in Google Scholar

A Chemo-enzymatically Linked Bispecific Antibody Retargets T Cells to a Sialylated Epitope on CD43 in Acute Myeloid Leukemia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Acute myeloid leukemia (AML) is a high-risk disease with a poor prognosis, particularly in elderly patients. Because current AML treatment relies primarily on untargeted therapies with severe side effects that limit patient eligibility, identification of novel therapeutic AML targets is highly desired. We recently described AT1413, an antibody produced by donor B cells of a patient with AML cured after allogeneic hematopoietic stem cell transplantation. AT1413 binds CD43s, a unique sialylated epitope on CD43, which is weakly expressed on normal myeloid cells and overexpressed on AML cells. Because of its selectivity for AML cells, we considered CD43s as a target for a bispecific T-cell–engaging antibody (bTCE) and generated a bTCE by coupling AT1413 to two T-cell–targeting fragments using chemo-enzymatic linkage. In vitro, AT1413 bTCE efficiently induced T-cell–mediated cytotoxicity toward different AML cell lines and patient-derived AML blasts, whereas endothelial cells with low binding capacity for AT1413 remained unaffected. In the presence of AML cells, AT1413 bTCE induced upregulation of T-cell activation markers, cytokine release, and T-cell proliferation. AT1413 bTCE was also effective in vivo. Mice either coinjected with human peripheral blood mononuclear cells or engrafted with human hematopoietic stem cells [human immune system (HIS) mice] were inoculated with an AML cell line or patient-derived primary AML blasts. AT1413 bTCE treatment strongly inhibited tumor growth and, in HIS mice, had minimal effects on normal human hematopoietic cells. Taken together, our results indicate that CD43s is a promising target for T-cell–engaging antibodies and that AT1413 holds therapeutic potential in a bTCE-format. Significance: These findings offer preclinical evidence for the therapeutic potential of a bTCE antibody that targets a sialylated epitope on CD43 in AML.