Published in

MDPI, Nutrients, 6(11), p. 1333, 2019

DOI: 10.3390/nu11061333

Links

Tools

Export citation

Search in Google Scholar

Fat Soluble Vitamins in Institutionalized Elderly and the Effect of Exercise, Nutrition and Cognitive Training on Their Status—The Vienna Active Aging Study (VAAS): A Randomized Controlled Trial

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Institutionalized elderly are at higher risk for micronutrient deficiency. In particular, fat soluble micronutrients, which additionally have antioxidative function, are of interest. The purpose of this secondary investigation of the Vienna Active Ageing Study was to assess and evaluate the plasma status of retinol, alpha- and gamma-tocopherol, alpha- and beta-carotene, lutein, zeaxanthin, beta-cryptoxanthin, and lycopene, as well as vitamin D (25(OH)D) in a cohort of institutionalized elderly. We further determined the effect of six months strength training with or without supplementing (antioxidant) vitamins and protein on the plasma status of these ten micronutrients. Methods: Three groups (n = 117, age = 83.1 ± 6.1 years)—resistance training (RT), RT combined with protein and vitamin supplementation (RTS), or cognitive training (CT)—performed two guided training sessions per week for six months. Micronutrients were measured with High Performance Liquid Chromatography (HPLC) at baseline and after 6 months of intervention. Physical fitness was assessed by the 6-min-walking, the 30-s chair rise, isokinetic dynamometry, and the handgrip strength tests. Results: At baseline, the plasma status of retinol was satisfactory, for alpha-tocopherol, beta-carotene, and 25(OH)D, the percentage of individuals with an insufficient status was 33%, 73% and 61%/81% (when using 50 nmol/L or 75 nmol/L as threshold levels for 25(OH)D), respectively. Plasma analyses were supported by intake data. Six months of elastic band resistance training with or without protein-vitamin supplementation had no biological impact on the status of fat soluble micronutrients. Even for vitamin D, which was part of the nutritional supplement (additional 20 µg/d), the plasma status did not increase significantly, however it contributed to a lower percentage of elderly below the threshold levels of 50/75 nmol/L (49%/74%). Conclusions: The findings of the study lead to the strong recommendation for regular physical activity and increased consumption of plant-based foods in institutionalized elderly. When supported by blood analysis, supplementing micronutrients in a moderate range should also be considered.