Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 11(9), p. 2284, 2019

DOI: 10.3390/app9112284

Links

Tools

Export citation

Search in Google Scholar

A Novel MOGA-SVM Multinomial Classification for Organ Inflammation Detection

Journal article published in 2019 by Kwok Chui ORCID, Miltiadis Lytras ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Wrist pulse signal (WPS) contains crucial information of humans’ health condition. It can serve as an alternative method for diagnosing of organ inflammation instead of traditional clinical measurement. In this paper, a novel multi-objective genetic algorithm based support vector machine (MOGA-SVM) has been proposed for the multinomial classification of the inflammations of appendix, pancreas, and duodenum. A customized similarity kernel (KCS) has been optimally designed. The performance of multinomial classification using KCS is compared with five types of kernels, linear, radial basis function (RBF), polynomial and sigmoid kernel, as well as mixtures of polynomial and RBF, to verify the effectiveness of KCS. The sensitivity, specificity and accuracy (Acc) of the proposed method are 92%, 91.2%, and 91.6% respectively. The results have demonstrated that KCS improves the accuracy of classification from 8.9% to 59.6%. When compared to related work, the proposed method increases the performance by more than 10%. It is believed that WPS can serve as alternative measures to diagnose organ inflammations.