Published in

MDPI, Applied Sciences, 9(9), p. 1913, 2019

DOI: 10.3390/app9091913

Links

Tools

Export citation

Search in Google Scholar

Spinning Disk Reactor Technique for the Synthesis of Nanometric Sulfur TiO2Core–Shell Powder for Lithium Batteries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sulfur/lithium battery performances are strictly related to the morphology and nanostructure of sulfur particles. In this work, a comparison of the morphological characteristics and electrochemical properties of electrodes based on colloidal sulfur (CS) obtained by means of traditional chemical precipitation from aqueous solution and via spinning disk reactor (SDR) has been performed. In particular, through the SDR technique and by using different fluid dynamic conditions, it was possible to obtain monodisperse and nanometricsulfurparticles with higher electrochemical performances when used as the cathodic active material in lithium batteries. Moreover, a method to produce core–shell nanoparticles with sulfur and titanium dioxide, starting from a colloidal sulfur (S8) solution and produced by SDR, has been performed, obtaining good electrochemical results. In particular, the nanometric sulfur powder produced by the SDR technique showed a capacity higher than CS after 100 cycles, even if the capacity decreased rapidly in both cases. Instead, considering the core–shell S–TiO2 material, the nanostructured electrode allowed a wide use of active material and a reduced capacity decay during cycling. Specifically, the material showed an initial capacity of 1395 mAh/g, i.e., representing 83% of the theoretical value, which decreased during operation up to 450 mAh/g after about 30 cycles. Then, the material capacity remained unchanged and no substantial loss of capacity was recorded up to 100th cycle.