Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, The International Journal of Biological Markers, 2(34), p. 205-209, 2019

DOI: 10.1177/1724600818817316

Links

Tools

Export citation

Search in Google Scholar

The metabolomic scent of cancer disease progression in soft tissue sarcoma: A case report

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The purpose of this case report is to describe the potential that metabolomics breath analysis may have in cancer disease monitoring. The advances in mass spectrometry instrumentation allow the accurate real-time analysis of volatile metabolites exhaled in the breath. The application of such non-invasive devices may provide innovative and complementary monitoring of the physio-pathological conditions of cancer patients. Case presentation: A 59-year-old Caucasian woman with spindle cell malignant mesenchymal sarcoma of the presacral region started a first-line therapy with non-pegylated liposomal doxorubicin and ifosfamide associated with pelvic radiant treatment. After two cycles of chemotherapy plus radiotherapy, a significant pulmonary disease progression was reported. Thus, a second-line therapy with trabectedin was administered. However, after only two cycles of treatment a re-staging computed tomography scan reported further cancer disease progression of the target pulmonary lesions as well as occurrence of new satellite bilateral nodules. Real-time analysis of breath exhaled volatile organic compounds, performed by select ion flow tube mass spectrometry (SIFT-MS) during the follow-up of the patient, showed a specific metabolic pattern not observed in the breath of other soft tissue sarcoma patients who achieved clinical benefit from the treatments. Conclusions: This case report revealed the importance of the non-invasive real-time volatile organic compounds breath analysis to distinguish individual specific chemo-resistance phenotypes among soft tissue sarcoma patients. Such observation seems to suggest that breath metabolomics may be particularly useful for monitoring cancer disease progression in soft tissue sarcoma patients where only cost-effective diagnostic tools, such as positron emission tomography and computed tomography, are available.