Published in

De Gruyter Open, Journal of Veterinary Research, 2(63), p. 285-292, 2019

DOI: 10.2478/jvetres-2019-0027

Links

Tools

Export citation

Search in Google Scholar

Effects of tiletamine-xylazine-tramadol combination and its specific antagonist on AMPK in the brain of rats

Journal article published in 2019 by Ning Ma, Xin Li, Hong-Bin Wang, Li Gao, Jian-Hua Xiao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Introduction: Tiletamine-xylazine-tramadol (XFM) has few side effects and can provide good sedation and analgesia. Adenosine 5’-monophosphate-activated protein kinase (AMPK) can attenuate trigeminal neuralgia. The study aimed to investigate the effects of XFM and its specific antagonist on AMPK in different regions of the brain. Material and Methods: A model of XFM in the rat was established. A total of 72 Sprague Dawley (SD) rats were randomly divided into three equally sized groups: XFM anaesthesia (M group), antagonist (W group), and XFM with antagonist interactive groups (MW group). Eighteen SD rats were in the control group and were injected intraperitoneally with saline (C group). The rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus, and brain stem were immediately separated, in order to detect AMPKα mRNA expression by quantitative PCR. Results: XFM was able to increase the mRNA expression of AMPKα1 and AMPKα2 in all brain regions, and the antagonist caused the opposite effect, although the effects of XFM could not be completely reversed in some areas. Conclusion: XFM can influence the expression of AMPK in the central nervous system of the rat, which can provide a reference for the future development of anaesthetics for animals.