Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Critical Reviews in Food Science and Nutrition, 9(55), p. 1246-1269, 2013

DOI: 10.1080/10408398.2012.724477

Links

Tools

Export citation

Search in Google Scholar

Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato

Journal article published in 2013 by Fabiana F. De Moura ORCID, Alexander Miloff ORCID, Erick Boy
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

HarvestPlus, part of the Consultative Group on Internation Agriculture research (CGIAR) Program on Agriculture for Nutrition and Health (A4NH) uses conventional plant breeding techniques to develop staple food crops that are rich in micronutrients, a food-based approach to reduce micronutrient malnutrition known as biofortification. The nutritional breeding targets are established based on the food intake of target populations, nutrient losses during storage and processing and bioavailability. This review collates the evidence on the retention of provitamin A carotenoid (pVAC) after processing, cooking, and storing of the staple crops targeted for pVAC biofortification: cassava, maize, and sweet potato. Sun drying was more detrimental to the pVAC levels (27–56% retention) in cassava than shade (59%) or oven (55–91%) drying, while the pVAC retention levels (66–96%) in sweet potato were not significantly different among the various drying methods. Overall, boiling and steaming had higher pVAC retention (80–98%) compared to baking (30–70%) and frying (18–54%). Gari, the most frequently consumed form of cassava in West Africa had the lowest pVAC retention (10–30%). The pVAC retention of maize grain and cassava and sweet potato flour reached levels as low as 20% after 1–4 months of storage and was highly dependent on genotype. Therefore, we recommend that an evaluation of the pVAC degradation rate among different genotypes be performed before a high pVAC crop is promoted.