Published in

American Astronomical Society, Astrophysical Journal, 2(875), p. 163, 2019

DOI: 10.3847/1538-4357/aafdfb

Links

Tools

Export citation

Search in Google Scholar

First Spectral Analysis of a Solar Plasma Eruption Using ALMA

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The aim of this study is to demonstrate how the logarithmic millimeter continuum gradient observed using the Atacama Large Millimeter/submillimeter Array (ALMA) may be used to estimate optical thickness in the solar atmosphere. We discuss how using multiwavelength millimeter measurements can refine plasma analysis through knowledge of the absorption mechanisms. Here we use subband observations from the publicly available science verification (SV) data, while our methodology will also be applicable to regular ALMA data. The spectral resolving capacity of ALMA SV data is tested using the enhancement coincident with an X-ray bright point and from a plasmoid ejection event near active region NOAA12470 observed in Band 3 (84–116 GHz) on 2015 December 17. We compute the interferometric brightness temperature light curve for both features at each of the four constituent subbands to find the logarithmic millimeter spectrum. We compared the observed logarithmic spectral gradient with the derived relationship with optical thickness for an isothermal plasma to estimate the structures’ optical thicknesses. We conclude, within 90% confidence, that the stationary enhancement has an optical thickness between 0.02 ≤ τ ≤ 2.78, and that the moving enhancement has 0.11 ≤ τ ≤ 2.78, thus both lie near to the transition between optically thin and thick plasma at 100 GHz. From these estimates, isothermal plasmas with typical Band 3 background brightness temperatures would be expected to have electron temperatures of ∼7370–15300 K for the stationary enhancement and between ∼7440 and 9560 K for the moving enhancement, thus demonstrating the benefit of subband ALMA spectral analysis.