Published in

American Association of Immunologists, The Journal of Immunology, 12(201), p. 3524-3533, 2018

DOI: 10.4049/jimmunol.1800723

Links

Tools

Export citation

Search in Google Scholar

DRB4*01:01 Has a Distinct Motif and Presents a Proinsulin Epitope That Is Recognized in Subjects with Type 1 Diabetes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract DRB4*01:01 (DRB4) is a secondary HLA-DR product that is part of the high-risk DR4/DQ8 haplotype that is associated with type 1 diabetes (T1D). DRB4 shares considerable homology with HLA-DR4 alleles that predispose to autoimmunity, including DRB1*04:01 and DRB1*04:04. However, the DRB4 protein sequence includes distinct residues that would be expected to alter the characteristics of its binding pockets. To identify high-affinity peptides that are recognized in the context of DRB4, we used an HLA class II tetramer-based approach to identify epitopes within multiple viral Ags. We applied a similar approach to identify antigenic sequences within glutamic acid decarboxylase 65 and pre-proinsulin that are recognized in the context of DRB4. Seven sequences were immunogenic, eliciting high-affinity T cell responses in DRB4+ subjects. DRB1*04:01-restricted responses toward many of these peptides have been previously described, but responses to a novel pre-proinsulin 9–28 peptide were commonly observed in subjects with T1D. Furthermore, T cells that recognized this peptide in the context of DRB4 were present at significantly higher frequencies in patients with T1D than in healthy controls, implicating this as a disease-relevant specificity that may contribute to the breakdown of β cell tolerance in genetically susceptible individuals. We then deduced a DRB4 motif and confirmed its key features through structural modeling. This modeling suggested that the core epitope within the pre-proinsulin 9–28 peptide has a somewhat unusual binding motif, with tryptophan in the fourth binding pocket of DRB4, perhaps influencing the availability of this complex for T cell selection.