Published in

MDPI, Proceedings of the Royal Society of Victoria, 1(4), p. 48, 2018

DOI: 10.3390/ecsa-5-05744

Links

Tools

Export citation

Search in Google Scholar

Using Smart Wearables to Monitor Cardiac Ejection

Journal article published in 2018 by Aristide Mathieu ORCID, Peter H. Charlton ORCID, Jordi Alastruey ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

An individual’s cardiovascular state is a crucial aspect of a healthy life. However, it is not routinely assessed outside the clinical setting. Smart wearables use photoplethysmography (PPG) to monitor the arterial pulse wave (PW) and estimate heart rate. The PPG PW is strongly influenced by the ejection of blood from the heart, providing an opportunity to monitor cardiac parameters using smart wearables. The aim of this study was to investigate the feasibility of monitoring left ventricular ejection time (LVET) and left ventricular contractility (LVC) from the PPG PW at the wrist. PPG PWs were simulated under a range of cardiovascular conditions using a numerical model of PW propagation. LVET and LVC were estimated from the first and second derivatives of the PPG PWs and compared to reference values extracted from the blood pressure PW at the aortic root. There was strong agreement between the estimated and reference values of LVET, indicating that it may be feasible to assess LVET from PPG signals, including those acquired by smart watches. The correlations between the estimated and reference values of LVC were less strong, indicating that further work is required to assess contractility robustly using smart wearables. This study demonstrated the feasibility of assessing LVET using smart wearables that could allow individuals to monitor their cardiovascular state on a daily basis.