Published in

American Association of Immunologists, The Journal of Immunology, 12(201), p. 3741-3749, 2018

DOI: 10.4049/jimmunol.1800700

Links

Tools

Export citation

Search in Google Scholar

High FcγR Expression on Intratumoral Macrophages Enhances Tumor-Targeting Antibody Therapy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Therapy with tumor-specific Abs is common in the clinic but has limited success against solid malignancies. We aimed at improving the efficacy of this therapy by combining a tumor-specific Ab with immune-activating compounds. In this study, we demonstrate in the aggressive B16F10 mouse melanoma model that concomitant application of the anti-TRP1 Ab (clone TA99) with TLR3-7/8 or -9 ligands, and IL-2 strongly enhanced tumor control in a therapeutic setting. Depletion of NK cells, macrophages, or CD8+ T cells all mitigated the therapeutic response, showing a coordinated immune rejection by innate and adaptive immune cells. FcγRs were essential for the therapeutic effect, with a dominant role for FcγRI and a minor role for FcγRIII and FcγRIV. FcγR expression on NK cells and granulocytes was dispensable, indicating that other tumoricidal functions of NK cells were involved and implicating that FcγRI, -III, and -IV exerted their activity on macrophages. Indeed, F4/80+Ly-6C+ inflammatory macrophages in the tumor microenvironment displayed high levels of these receptors. Whereas administration of the anti-TRP1 Ab alone reduced the frequency of these macrophages, the combination with a TLR agonist retained these cells in the tumor microenvironment. Thus, the addition of innate stimulatory compounds, such as TLR ligands, to tumor-specific Ab therapy could greatly enhance its efficacy in solid cancers via optimal exploitation of FcγRs.