Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 6(11), p. 1368, 2019

DOI: 10.3390/nu11061368

Links

Tools

Export citation

Search in Google Scholar

Association of Folate and Vitamins Involved in the 1-Carbon Cycle with Polymorphisms in the Methylenetetrahydrofolate Reductase Gene (MTHFR) and Global DNA Methylation in Patients with Colorectal Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Folate, vitamin B2, vitamin B6, vitamin B12, choline, and betaine are nutrients involved in the 1-carbon cycle that can alter the levels of DNA methylation and influence genesis and/or tumor progression. Thus, the objective of this study was to evaluate the association of folate and vitamins involved in the 1-carbon cycle and MTHFR polymorphisms in global DNA methylation in patients with colorectal cancer gene. The study included 189 patients with colorectal adenocarcinoma answering a clinical evaluation questionnaire and the Food Frequency Questionnaire (FFQ) validated for patients with colon and rectal cancer. Blood samples were collected for evaluation of MTHFR gene polymorphisms in global DNA methylation in blood and in tumor. The values for serum folate were positively correlated with the equivalent total dietary folate (total DFE) (rho = 0.51, p = 0.03) and global DNA methylation (rho = 0.20, p = 0.03). Individuals aged over 61 years (p = 0.01) in clinicopathological staging III and IV (p = 0.01) and with + heterozygous mutated homozygous genotypes for the MTHFR A1298C gene had higher levels of global DNA methylation (p = 0.04). The association between dietary intake of folate, serum folate, and tumor stage were predictive of global DNA methylation in patients’ blood. The levels of serum folate, the dietary folate and the status of DNA methylation can influence clinicopathological staging.