Published in

American Society for Microbiology, Journal of Virology, 13(93), 2019

DOI: 10.1128/jvi.00402-19

Links

Tools

Export citation

Search in Google Scholar

Adenovirus E1B 55-Kilodalton Protein Targets SMARCAL1 for Degradation during Infection and Modulates Cellular DNA Replication

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Viruses have evolved to inhibit cellular DNA damage response pathways that possess antiviral activities and utilize DNA damage response pathways that possess proviral activities. Adenovirus has evolved, primarily, to inhibit DNA damage response pathways by engaging with the ubiquitin-proteasome system and promoting the degradation of key cellular proteins. Adenovirus differentially regulates ATR DNA damage response signaling pathways during infection. The cellular adenovirus E1B-55K binding protein E1B-AP5 participates in ATR signaling pathways activated during infection, while adenovirus 12 E4orf6 negates Chk1 activation by promoting the proteasome-dependent degradation of the ATR activator TOPBP1. The studies detailed here indicate that adenovirus utilizes ATR kinase and CDKs during infection to promote the degradation of SMARCAL1 to attenuate normal cellular DNA replication. These studies further our understanding of the relationship between adenovirus and DNA damage and cell cycle signaling pathways during infection and establish new roles for E1B-55K in the modulation of cellular DNA replication.