Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms6197

Links

Tools

Export citation

Search in Google Scholar

Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone

Journal article published in 2014 by M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, A. Seppälä ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractEnergetic electron precipitation (EEP) from the Earth’s outer radiation belt continuously affects the chemical composition of the polar mesosphere. EEP can contribute to catalytic ozone loss in the mesosphere through ionization and enhanced production of odd hydrogen. However, the long-term mesospheric ozone variability caused by EEP has not been quantified or confirmed to date. Here we show, using observations from three different satellite instruments, that EEP events strongly affect ozone at 60–80 km, leading to extremely large (up to 90%) short-term ozone depletion. This impact is comparable to that of large, but much less frequent, solar proton events. On solar cycle timescales, we find that EEP causes ozone variations of up to 34% at 70–80 km. With such a magnitude, it is reasonable to suspect that EEP could be an important part of solar influence on the atmosphere and climate system.