Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Microbial Biotechnology, 2(6), p. 168-177, 2013

DOI: 10.1111/1751-7915.12020

Links

Tools

Export citation

Search in Google Scholar

Ion Torrent-based transcriptional assessment of a Corynebacterium pseudotuberculosis equi strain reveals denaturing high-performance liquid chromatography a promising rRNA depletion method

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Corynebacterium pseudotuberculosis equi is a Gram-positive pathogenic bacterium which affects a variety of hosts. Besides the great economic losses it causes to horse-breeders, this organism is also known to be an important infectious agent to cattle and buffaloes. As an outcome of the efforts in characterizing the molecular basis of its virulence, several complete genome sequences were made available in recent years, enabling the large-scale assessment of genes throughout distinct isolates. Meanwhile, the RNA-seq stood out as the technology of choice for comprehensive transcriptome studies, which may bring valuable information regarding active genomic regions, despite of the still impeditive associated costs. In an attempt to increase the use of generated reads per instrument run, by effectively eliminating unwanted rRNAs from total RNA samples without relying on any commercially available kits, we applied denaturing high-performance liquid chromatography (DHPLC) as an alternative method to assess the transcriptional profile of C. pseudotuberculosis. We have found that the DHPLC depletion method, allied to Ion Torrent sequencing, allows mapping of transcripts in a comprehensive way and identifying novel transcripts when a de novo approach is used. These data encourage us to use DHPLC in future transcriptional evaluations in C. pseudotuberculosis.