Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(487), p. 133-146, 2019

DOI: 10.1093/mnras/stz1050

Links

Tools

Export citation

Search in Google Scholar

The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble

Journal article published in 2019 by Thomas G. Wilson ORCID, Jay Farihi ORCID, Boris T. Gänsicke ORCID, Andrew Swan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract This paper presents combined Spitzer IRAC and Hubble COS results for a double-blind survey of 195 single and 22 wide binary white dwarfs for infrared excesses and atmospheric metals. The selection criteria include cooling ages in the range 9 to 300 Myr, and hydrogen-rich atmospheres so that the presence of atmospheric metals can be confidently linked to ongoing accretion from a circumstellar disc. The entire sample has infrared photometry, whereas 168 targets have corresponding ultraviolet spectra. Three stars with infrared excesses due to debris discs are recovered, yielding a nominal frequency of $1.5_{-0.5}^{+1.5}$ per cent, while in stark contrast, the fraction of stars with atmospheric metals is 45 ± 4 per cent. Thus, only one out of 30 polluted white dwarfs exhibits an infrared excess at 3–4 $μ$m in IRAC photometry, which reinforces the fact that atmospheric metal pollution is the most sensitive tracer of white dwarf planetary systems. The corresponding fraction of infrared excesses around white dwarfs with wide binary companions is consistent with zero, using both the infrared survey data and an independent assessment of potential binarity for well-established dusty and polluted stars. In contrast, the frequency of atmospheric pollution among the targets in wide binaries is indistinct from apparently single stars, and moreover the multiplicity of polluted white dwarfs in a complete and volume-limited sample is the same as for field stars. Therefore, it appears that the delivery of planetesimal material on to white dwarfs is ultimately not driven by stellar companions, but by the dynamics of planetary bodies.