Published in

American Physiological Society, American Journal of Physiology - Lung Cellular and Molecular Physiology, 5(317), p. L602-L614, 2019

DOI: 10.1152/ajplung.00441.2018

Links

Tools

Export citation

Search in Google Scholar

CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease. Although cigarette smoke was considered the main cause of development, the heterogeneous nature of the disease leaves it unclear whether other factors contribute to the predisposition or impaired regeneration response observed. Recently, epigenetic modification has emerged to be a key player in the pathogenesis of COPD. The addition of methyl groups to arginine residues in both histone and nonhistone proteins by protein arginine methyltransferases (PRMTs) is an important posttranslational epigenetic modification event regulating cellular proliferation, differentiation, apoptosis, and senescence. Here, we hypothesize that coactivator-associated arginine methyltransferase-1 (CARM1) regulates airway epithelial cell injury in COPD pathogenesis by controlling cellular senescence. Using the naphthalene (NA)-induced mouse model of airway epithelial damage, we demonstrate that loss of CC10-positive club cells is accompanied by a reduction in CARM1-expressing cells of the airway epithelium. Furthermore, Carm1 haploinsuffficent mice showed perturbed club cell regeneration following NA treatment. In addition, CARM1 reduction led to decreased numbers of antisenescent sirtuin 1-expressing cells accompanied by higher p21, p16, and β-galactosidase-positive senescent cells in the mouse airway following NA treatment. Importantly, CARM1-silenced human bronchial epithelial cells showed impaired wound healing and higher β-galactosidase activity. These results demonstrate that CARM1 contributes to airway repair and regeneration by regulating airway epithelial cell senescence.